Nitrate Losses in Pastures Grazed by Lactating Dairy Cows

M.P. Russelle, T. Dhiman, V.R. Kanneganti, L.D. Satter, D.G. Johnson, A.D. Garcia and W.S. Nord

Introduction

The practice of intensive rotational grazing of livestock is becoming popular in the USA because of lower costs, more attractive labor tasks, higher profitability, and apparent conformation to good ecological principles. Data from humid, marine climates suggest that significant ground water contamination by NO₃-N has occurred under intensive grazing.

Grazing animals harvest herbage from a broad area and return most of the ingested N to small, concentrated excreta patches; a single urination by a dairy cow applies the equivalent of 500-1000 kg N/ha on an area of 0.2 to 0.5 m². About 15 to 30% of dietary N typically is "excreted" in the form of milk. Milk production increases with proper feed supplementation, and N excretion in urine may decrease simultaneously. Our objective was to collect the first data on apparent N use efficiency and consequent NO₃-N leaching losses under this intensive rotational grazing in the Upper Midwest Region of the USA.

Materials and Methods

Permanent paddocks were fenced in established pastures on the US Dairy Forage Research Center Farm, Prairie du Sac, WI, and the West Central Experiment Station, Morris, MN. Pastures were comprised primarily of *Bromus inermis* Leyss and *Elytrigia repens* (L.) Nevski at the MN site, and *Poa pratensis* L., *E. repens*, *B. inermis*, and *Trifolium repens* L. (about 12% of pasture DM) at the WI site. Pasture received 65 kg fertilizer N/ha annually at WI and no fertilizer N at the MN site. In 2 years in WI and 1 year in MN, lactating dairy cows were grazed for 12 to 24 h in each paddock at intervals determined by forage regrowth.

Cows were divided into groups fed different levels of supplement. At the WI site, one-third of the cows consumed pasture (and minerals) only and other groups received supplement equal to about 0.33 or

0.67 of their daily DM intake. In 1994, this supplement averaged 5.6 and 10.5 kg/d, respectively, and contained about 155 g/kg crude protein (CP), and in 1995 it was a constant 6.0 and 11.6 kg/d containing about 195 g CP/kg. Before and after the grazing season, cows were fed diets with grain:forage ratios of 0:100, 25:75, and 50:50 for the 0, 0.33, and 0.67 supplement treatments, respectively, and daily milk production was measured for about 275 d. At the MN site, cows received either 4.5 or 9.0 kg supplement/d containing 128 g CP/kg in 1995 and daily milk production was measured for 67 d from May 19 through July 24. Milk CP concentrations were determined once per week at both sites.

The soil at the MN site was a Doland silt loam and at the WI site was a McHenry silt loam. Before grazing began, large diameter (30 cm) polyvinyl chloride drainage lysimeters were installed to depths averaging 70 cm (WI) or 115 cm (MN). Each grazed paddock contained 12 lysimeters, and adjacent mechanically harvested areas contained four lysimeters each for control and urine (3 L per lysimeter applied twice each grazing season) treatments. Leachate volume and concentrations of $\mathrm{NH_4}$ -N and $\mathrm{NO_3}$ -N were determined for each lysimeter. Soil cores were taken to 1.5 m in autumn to monitor soil $\mathrm{NO_3}$ -N concentrations.

Results and Discussion

Milk production increased linearly with replacement of pasture by supplemental feed at the WI site in both years, with total milk yield increasing from 17.3 kg/d on pasture alone to $26.3 \, \text{kg/d}$ with $0.67 \, \text{supplement}$. Total milk yield was $22.0 \, \text{kg/d}$ at the MN site, with no effect of supplementation. Nitrogen excretion in milk increased with supplement addition in all three site years (P < 0.1). Supplement and pasture contained similar CP concentrations at the WI site. Pasture herbage samples have not been analyzed from the MN site, but we expect that the supplement contained less CP than grazed pasture. If cows substitute supplement

for pasture, then N excretion in dung and especially urine likely decreased with increased feed supplementation, implying that dietary N use efficiency increased with supplementation.

No significant leaching occurred during summer at either site. During the period from fall to spring, total water leaching losses at the WI site averaged 2.6 cm in 1994-5 and 1.4 cm in 1995-6, reflecting differences in over-winter precipitation. Essentially no drainage occurred at the MN site, due to the drier than normal spring in 1995 and the deeper volume in the lysimeters. In the absence of animals and except in years of very high rainfall, leaching losses in the Upper Midwest typically are small under perennial species grown on fine-textured soils (Randall et al., 1994).

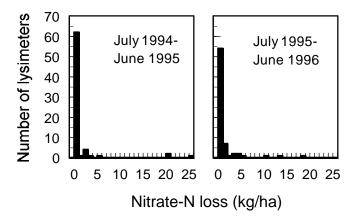


Figure 1. Frequency diagrams of NO₃-N losses in drainage lysimeters located in pastures under intensive rotational grazing management with lactating Holsteins at Prairie du Sac, WI. All three diet supplements are included, because there were no differences in NO₃-N loss among treatments.

There were no detectable differences in NO₃-N leaching losses among supplement treatments at the WI site, but losses were higher when urine was applied directly to mown grass. As expected, there was tremendous variability among lysimeters (Fig. 1). Total losses in grazed paddocks ranged up to 27 kg NO₃-N/ha from July 1994 to June 1995 and 18 kg NO₃-N/ha during the next 12 months, but 87 and 77% of these lysimeters lost less than 1 kg NO₃-N/ha over the two respective grazing seasons. Annual leaching losses directly under urine spots (applied twice during each grazing season) averaged 22 kg NO₃-N/ha.

Nitrate losses measured under pastures on these silt loam soils were insignificant over three site-years. High water and N use by the deeply rooted pasture species and low fertilizer N rates likely helped conserve N. Use of appropriate dietary supplementation with lactating dairy cows increased milk yield in 2 of 3 site years, but did not affect already low NO₃-N leaching losses in these fine-textured Upper Midwest soils. Questions remain about the potential impact of leaching losses on shallow or coarse-textured soils and in highly N-fertilized pastures, and in areas with adverse animal impact (e.g., near water tanks).

Acknowledgment

This research was supported in part by grant no. 9403482 from the USDA National Research Initiative Competitive Grants Program.